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Abstract-Energy-stability theory is applied to the case’ of radiation heat transfer in an optically thin, 
quiescent fluid layer heated from below and bounded by rigid, black, perfectly conducting planes. The 
radiation term in the energy equation destroys the quadratic character of the energy identity. It is shown, 
however, that the right-hand side of the energy identity can be bounded by a suitable quadratic term for 
all physically allowable disturbances. The result is a conditional stability limit dependent upon disturbance 
amplitude. Results are computed for a variety of cases ; these are compared to existing linear and energy 

stability results. 

1. INTRODUCTION 

Energy-stability theory dates to the early work of 
Reynolds [I] and Orr [2], but owes its modern incar- 
nation to Serrin [3] and Joseph [4]. It provides a 
sufficient condition for stability, usually to dis- 
turbances of arbitrary amplitude, which is comp- 
lementary to the sufficient condition for instability 
to infinitesimal disturbances given by linear-stability 
theory. For certain instability mechanisms, the results 
of energy and linear theories are quite close, restricting 
the range of potential subcritical instability for the 
basic state under consideration. In the case of the 
onset of convection in a quiescent, nonradiating Bous- 
sinesq fluid bounded by rigid, perfectly conducting 
planes, the results of the theories are identical, result- 
ing in a global stability limit. 

Energy theory has recently shown promise in pro- 
viding stability boundaries for the instability of ther- 
mocapillary convection in a model of the float-zone 
crystal-growth problem [5, 61. In this problem, 
however, a simple convective heat-transfer mechanism 
was assumed to hold at the free surface, while the 
actual crystal-growth application is obviously influ- 
enced strongly by radiative heat transfer. The purpose 
of this research is to consider the influence of radiation d 
on an energy-stability analysis of the thermal insta- 
bility problem. The difficulty encountered in incor- 
porating radiative effects is associated with the non- 
linearity of the temperature in the energy equation. 
This nonlinearity results in an energy identity which 
contains a nonquadratic functional. For some types 
of nonquadratic functionals, it is possible [7, 81 to use 
a spatially weighted energy to overcome the restriction 
of a conditional stability limit, i.e. one which is valid 
for disturbances less than a certain amplitude. We 
shall show for the problem considered here that, for 
physically allowable disturbances, all nonquadratic 

terms in this functional are stabilizing and may be 
bounded by an appropriate quadratic term, reducing 
the determination of stability limits to the solution of 
a standard eigenvalue problem. A conditional stability 
limit is obtained and the amount of restriction 
imposed by this condition will be seen to depend, 
not surprisingly, on the strength of the radiative heat 
transfer. 

The following sections describe the governing equa- 
tions, implementation of energy theory and the results 
obtained. Comparisons with previous work are poss- 
ible in a couple of limiting cases, namely: (i) in the 
absence of radiation, where the results should be in 
agreement with those from classical analysis of ther- 
mal instability ; and (ii) restriction to small tem- 
perature differences and infinitesimally small dis- 
turbances, in which case energy and linear theories 
coincide and the linear stability results of Christo- 
phorides and Davis [9] are available. 

2. GOVERNING EQUATIONS AND BASIC STATE 

Consider an optically thin, Boussinesq fluid con- 
tained between a pair of black, perfectly conducting, 
horizontal planes a distance d apart as illustrated in 
Fig. 1. The lower plane at z = 0 is held at the constant 
temperature TH and the upper at constant temperature 
TC < TH. The momentum and continuity equations, 
subject to the Boussinesq approximation, are given by 

v,+(v*V)v = -V ; +vV’v+;gk 
0 

(1) 

and 

v-v = 0. (2) 

The energy balance includes radiation heat transfer 
and incorporates the assumptions of an optically thin 
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NOMENCLATURE 

horizontal wavenumber 
disturbance bound 
specific heat 
layer thickness 
dissipation functional 
energy functional 
gravitational acceleration 
space of kinematically admissible 
functions 
production functional 
thermal conductivity 
fluid index of refraction 
radiation parameter 
pressure 
basic-state pressure 
Prandtl number 
Rayleigh number 
time 
temperature 

Greek symbols 
thermal diffusivity 
thermal expansion coefficient 
temperature difference 
overheat parameter 
basic-state temperature 
disturbance temperature 
fluid absorption coefficient 
coupling parameter 
dynamic viscosity 
kinematic viscosity 
density 
Stefan-Boltzmann constant 
modified disturbance temperature 
radiation function. 

Subscripts 
C cold-wall or core value 

v = (u, 21, w) velocity 
V integration volume 
x = (x, y, z) spatial coordinates. 

E energy limit 
H hot-wall value 
x, y spatial direction. 

fluid and either (i) an absorption coefficient that is 
independent of temperature, pressure and wavelength, 
or (ii) a Planck mean absorption coefficient that is 
independent of temperature and pressure. The result- 
ing equation is 

4&a 
T,+v*VT= aV2T--- PC% [ 

T”-;(T:+T$) 1 
(3) 

In the above equations, v is the velocity vector, p the 
pressure and T the temperature. The quantity pc is the 
cold-wall fluid density from the equation of state 

P = ~~11 -P(T- Tc)l. (4) 

Other fluid properties (assumed constant throughout 
the layer) are fi the coefficient of volumetric expansion, 
CI the thermal diffusivity, v = p/pc the kinematic 
viscosity, cp the specific heat at constant pressure, IC the 
absorption coefficient and n the index of refraction. 
Finally, g is the gravitational acceleration and c is the 

Stefan-Boltzmann constant. The boundary con- 
ditions which accompany equations (l)-(3) under the 
assumptions stated above are : 

atz=O, v=O,T= TH (5) 

andatz = d, v=O,T=T,. (6) 

Note that the use of a Planck mean absorption 
coefficient that is independent of temperature implies a 
specific dependence between the wavelength and the 
temperature in the absorption coefficient. For exam- 
ple, if ~~(1, T), one possibility would be to require 
~c,(l/T, T) = constant. Thus, the use of the Planck 
mean absorption coefficient may not be as general as 
it seems. 

We seek a motionless basic state of the form v = 0 
and (p, T) = (P(z), O(z)), satisfying equations (l)- 
(3), subject to equations (5) and (6). Introducing the 
length scale d and a dimensionless basic-state tem- 
perature O* = (0 - T,)/AT, where AT = TH - T,-, the 
basic-state temperature is governed by (dropping 
asterisks) 

1 g perfectly conducting 

Fig. 1. A schematic of the optically thin liquid layer heated from below. 
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with 

O(0) = 1 (8) 

and 

’ O(1) = 0. (9) 

Two dimensionless groups appear in equation (7) : the 
radiation-conduction parameter N,, defined as 

161cn2ad2T3 
N,= k c, (10) 

which is the ratio of radiative to conductive heat trans- 
fer ; and an overheat parameter y, defined as 

‘I = AT/T,. (11) 

In equation (lo), k is the thermal conductivity. Solu- 
tions to equations (7)-(9) were determined numeri- 
cally using a standard shooting technique. Further 
discussion ofithe motionless basic-state problem with- 
out the optically-thin approximation can be found in 
the standard texts by Siegel and Howell [lo] and 
6zisik [ll]. 

Basic-state temperature profiles are shown in Fig. 
2 for various values of the radiation and overheat 
parameters. Figure 2(a) shows profiles for a fixed 
overheat and various levels of radiation. In the limit 
of negligible radiation heat transfer (Nr --f 0), one 
recovers the usual linear temperature variation 
between the two plates. As radiation becomes more 
important, one observes the development of thermal 
boundary layers at both plates with the central core 
approaching a uniform temperature. That this will 
occur for large N, is clear from the form of equation 
(7), since large N, is equivalent to having a small 
parameter multiplying the most highly differentiated 
term. A matched asymptotic analysis of this problem 
yields, at leading order, a core temperature Oc given 

by 

0, = -;+[;(l+;)n+$]1’4. (12) 

For r~ = 0.3, equation (12) yields a value of 
0, = 0.59455, in excellent agreement with the numeri- 
cal result of Fig. 2(a) for N, = 100, in which 
@(l/2) = 0.5942. As r~ approaches Zero, the core tem- 
perature becomes l/2-the mean temperature of the 
two plates. This is reasonable because, in this limit, 
the core fluid absorbs radiation equally from both 
boundary plates. This equality of absorption occurs 
when either AT -+ 0 and so TH + T,, or when AT stays 
fixed and both TH and T, -+ co. Thus, under the 
assumption of black walls and an optically thin layer, 
the temperature structure observed with increasing 
radiation-conduction parameter is in accord with 
intuition. 

The effect of varying the overheat parameter is 

(a)q = 0.3 

(b) N, = 5.0 

Z 

0 0.2 0.4 0.6 0.8 1 
0 

Fig. 2. The basic-state temperature profile for : (a) q = 0.3 
and N, = 0, 5, 10, ‘15,20,25 and 100; and (b) N, = 5.0 and 

q = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and2.0. 

shown in Fig. 2(b). For the moderate value of N, 
shown, the effect of increasing overheat is to skew the 
core temperature toward that of the hot wall. This 
again is in keeping with intuition. 

3. ENERGY-STABILITY ANALYSIS 

The analysis begins in the standard fashion by 
assuming a solution of the form 

[v(x, 0, p(x, 0, T(x, 01 = P, P(z), @@)I 
+ [V’(X, O>P’(X> ~)>~(x, 01, (13) 

where P(z) is the hydrostatic basic-state pressure field 
and the final bracketed quantity represents dis- 
turbances to the basic state. Substituting this form 
into governing equations (l)-(3) and using scales of 
a/d, AT, KLa/d’ and d2/a for the disturbance velocity, 
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temperature, pressure and time, respectively, and 
using a reference temperature of TC, one arrives at the 
disturbance equations (dropping primes) : 

Pr-‘{v,+(v*V)v} = -Vp+V*v+,,‘%$k (14) 

l$,+vV~+$Gv*VO = V%$-~Y (15) 

v-v = 0, (16) 

where we have replaced Q by C$ = Q,,/%, and 

Two additional dimensionless parameters appear in 
these equations, the Prandtl number Pr = v/a and the 
Rayleigh number 

Energy-stability theory is applied at this point by 
taking the inner product of the disturbance velocity 
v = (u, v, w) with equation (14), multiplying the dis- 
turbance energy equation (15) by c$, coupling (using 
a new parameter 1 > 0) and integrating the result over 
a volume V, obtaining the energy identity 

dE NJ3 -= 
dt 

-D+I&-L7 
s 

@dV, (18) 
v 

where 

E = i 
s 

{Pr-’ Iv]* -t-L@} dV (energy) (19) 
Y 

D = 
s 

V{]Vv]2+1]V4]2jdV (dissipation) (20) 

and 

z= I w&[ 1 -A@‘] d I’ (production), (21) 
v 

where a prime on 0 denotes differentiation with 
respect to z. 

The volume V is chosen assuming disturbances 
which are periodic in the x- and y-directions with 
wavenumbers a, and au, respectively, and is the cell 

The coupling parameter fl is a parameter whose value 
is arbitrary, since it serves merely to link together the 
disturbance kinetic and thermal “energies” to form 
the energy functional E. Since it is desired to determine 
the largest value of the Rayleigh number (the chosen 
stability parameter) below which stability is guaran- 

teed, I is selected, through numerical experimentation, 
to optimize this result [12]. 

When radiation is negligible (Nr = 0), the last func- 
tional in equation (18) is absent and the remaining 
functionals in the energy identity are quadratic in 
disturbance quantities. The maximum problem 
obtained by bounding the right-hand side of what 
remains in equation (18) leads to a set of Euler- 
Lagrange equations that are identical to the linear 
stability equations, yielding an energy limit equal to 
the linear limit of Ra = 1708. 

For the case of interest here, N, # 0 and the effect 
of radiation is always stabilizing. In order to dem- 
onstrate this, it is necessary to show that the quantity 
c$Y is nonnegative-definite for all physically allowable 
disturbances. First we define i = G/AT = 0 + T,/AT, 
where 0 is the dimensional basic-state absolute tem- 
perature. Note that T, < a < TH and so l/n < 
[ < If l/n. Next, we define 

JRa- - @ii- x=~+~+z=-@!~+@)=~T; 

where ?? is the dimensional disturbance temperature 
and T is the dimensional absolute temperature. Since 
F > 0, we have x > 0 for all physically allowable tem- 
peratures. Now, we write the quantity @I’ in terms of 
[ and x as 

(22) 
Since x > 0 and c > 0, we see that 4Y is nonnegative- 
definite. Thus, radiation heat transfer is proved to be 
stabilizing in the situation considered here. 

In order to proceed further with the energy-theory 
analysis, the quintic character of the functional in 
equation (18) involving the terms in equation (22) 
needs to be examined. From the fact that x > 0, we 
can write the greatest lower bound on 4 as 

4 > -JZmin[ = -JRa/q. (23) 

This suggests the following definition of a bounding 
parameter B : 

+>--Bfi/q, O<B<l. 

This implies that 

x > (1 --B)&& 

and, from equation (22), we find 

(24) 

where 

M= (1-B)3+(l-B)2+2-B 

l,<M<4. 

(25) 
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Applying inequality (25) to the energy identity (18) 
results in the inequality 

in which all terms are now of standard quadratic form 
in disturbance quantities. Finally, we use the 
inequality (24) to write a proper bound on the ampli- 
tude of the thermal disturbance in the form 

l&U&&, O<Bdl. (27) 

lf a disturbance satisfies the bound (27), then it also 
satisfies the bound (24) and the energy inequality (26) 
follows. The result of this bound (27) on the amplitude 
of the thermal disturbance is that the stability limit 
determined from the modified energy identity (26) is 
a conditional stability limit that is dependent upon the 
disturbance amplitude through the parameter B. Note 
that, if B = 1, we can use the less restrictive bound 
(24) and say that the conditional stability limit is valid 
for all physifally allowable thermal disturbances. 

We now apply the reformulated energy theory of 
Davis and von Kerczek [13] and further bound the 
right-hand side of equation (26), viz. 

1 dE 
-D+Z&?$ 

--<vvm$x 
E dt E 

(28) 
where the maximum is taken over the space H of 
kinematically admissible functions, 

H={v,4lv=qS=O on z=O,l;V*v=O}. 

Asymptotic stability in the mean (i.e. E + 0 as t + co) 
is guaranteed for v < 0. Hence, for fixed coupling 
parameter 1, the energy limit corresponds to the 
largest value of Ra for which v = 0. From equation 
(28), one may derive an equivalent set of Euler- 
Lagrange equations ; these may be further manipu- 
lated in standard fashion to eliminate all variables in 
favor of w and 4. Further defining the quantities W 
and @ by 

and 

W(X, Y, z> = WzMx, Y> 

~(x,Y,z> = WH(;,Y), 

where 

ViH+a*H = 0, 

is the horizontal wavenumber and v; = 
(8*/8x’)+ (a’jay’) is the horizontal Laplacian, allows 
the problem for the determination of the energy limit 
to be reduced to the solution of the sixth-order eigen- 
value problem : 

(D*-a*)‘W-~a’JRa(l-aO’)~=O (29) 

subject to the conditions 

W=DW=Q=O on z=O,l. (31) 

In the above, D and a prime both indicate differ- 
entiation with respect to z. 

The energy stability limit Ra, is now determined as 

RaE = ~,a? min Ra”, (34 a , 

where Ra* is the smallest positive eigenvalue of system 
(29))(31). For given values of N, and v, the basic state 
was determined, as outlined in the previous section. 
The linear eigenvalue problem was solved using stan- 
dard shooting and the numerical algorithm was 
checked against the published results of Joseph and 
Shir [12]. Values of Ra* were determined for fixed 
values of parameters N,, a, 1 and the bounding par- 
ameter B. Subsequent variation of a and a permits the 
determination of Ra, according to the procedure of 
equation (32). For values of the Rayleigh number 
Ra < Ra,, the quiescent state is stable to disturbances 
obeying the bound given by equation (27). 

4. RESULTS AND DISCUSSION 

The calculations just described were performed on 
an IBM RISC System/6000 computer for a variety of 
parameters to assess the influence of radiation heat 
transfer and disturbance bounds on the stability 
boundary. Recall that the bounding parameter B was 
restricted to lie between zero and unity, with zero 
representing a negligible disturbance amplitude and 
unity all physically allowable thermal disturbances. 
It can further be shown that, for B = 0, the Euler- 
Lagrange system is equivalent to that governing the 
linear stability problem. Christophorides and Davis 
[9] did a linear stability analysis under the assumption 
of small AT, corresponding to ye ---f 0 in our notation. 
We computed the cases (N,, B, y) = (1, 0,O) and (Nr, 
B, y) = (5, 0, 0) and agreed with their linear stability 
results to about 0.01%. 

Figure 3 shows the influence of the radiation and 
bounding parameters for a fixed value of the overheat 
parameter (q = 0.3). The lowest, solid curve on the 
figure corresponds to the absence of radiation heat 
transfer (N, = 0) and is at the value Ran = 1708, 
which is the classical stability boundary for rigid, per- 
fectly conducting walls 1121. Since N, = 0,‘the influ- 
ence of the bounding parameter disappears from the 
result, as is easily observed from equation (26), con- 
sistent with the coincidence of the energy and linear 
stability limits of the classical problem. 

The influence of the bounding parameter B is, not 
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Fig. 3. The energy stability limit Ru, vs the bounding par- 
ameter B for q = 0.3 and N, = 0, 1, 2, 3, 4 and 5. 

surprisingly, to increase the energy stability limit for 
B --f 0. For a fixed value of N,, the magnitude of Ra, 
increases as B decreases. The intersections of the 
curves for different values of the radiation parameter 
with the vertical axis B = 0 provide the linear stability 
limits for these values of N, and q = 0.3. 

The stabilization provided by including radiation 
heat transfer is also partially illustrated by Fig. 3. For 
a fixed value of the bounding parameter, increasing 
N, results in a larger value of Ra,. It was demonstrated 
analytically that this would occur by showing that the 
energy-identity functional corresponding to radiative 
transfer was nonnegative-definite. As pointed out by 
Christophorides and Davis [9], this stabilization may 
also be anticipated on physical grounds from a re- 
examination of the basic-state temperature profiles of 
Fig. 2. The effect of increasing both N, and y is to 

2400 
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1700 
0 1 2 3 4 5 

NT 

Fig. 4. The energy stability limit Ra, vs the radiation-con- 
duction parameter N, for all physically allowable dis- 

turbances (B = 1) and 7 = 0, 0.1, 0.2, 0.3, 0.4 and 0.5. 

1.25 

(a) 

aE 

0 1 2 3 4 5 

NT 

Fig. 5. The minimizing value of (a) the coupling parameter 
1, and (b) the horizontal wavenumber aB vs the radiation- 
conduction parameter N, for all physically allowable dis- 

turbances (B = 1) and y = 0, 0.1, 0.2, 0.3, 0.4 and 0.5. 

cause the temperature variations within the layer to 
become confined (for asymptotically large values of 
both parameters) to boundary layer regions near both 
walls. The net effect of this layer formation is to 
decrease the effective length scales over which the tem- 
perature variations occur, therefore reducing the 
<ffective Rayleigh number. Figure 4 shows the effect of 
the overheat parameter 11 for all physically allowable 
disturbances (B = 1). Again, the effect of increasing 9 
is to provide stabilization, but only through its influ- 
ence on the basic state, since y, unlike N,, does not 
appear explicitly on the right-hand side of equation 

(28). 
Recall that the determination of Ra, requires that 

the results of a linear eigenvalue calculation be max- 
imized over the coupling parameter 1, and minimized 
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over the horizontal wavenumber a according to equa- 
tion (32). Computations of energy stability limits for 
thermocapillary convection in half-zone models of the 
float-zone problem [5,6] found that changes in 1 could 
bring about order-of-magnitude variations in the 
energy stability limit and that the maximizing value 
of this parameter was extremely small [0(1 O-‘)I, indi- 
cating the lack of importance of thermal disturbances 
in determining the stability limit. For this problem, 
like the standard problem without radiation, this is 
not the case as observed in Fig. 5(a), which shows the 
variation of &, the maximizing value of 1, with N, 
and q for all physically allowable disturbances. The 
increase of A, with increasing radiation may be loosely 
interpreted as representing the increased importance 
of thermal disturbances in the energy functional. The 
corresponding variation of the minimizing horizontal 
wavenumber aE is given in Fig. 5(b). Its increase with 
increasing radiation is physically consistent with the 
decrease in the size of the effective length scales dis- 
cussed above ; however, the variation is slight. 

5. SUMMARY 

Energy-stability theory was applied to a basic state 
of a quiescent, optically thin, horizontal fluid layer 
heated from below, bounded by two black, isothermal 
walls and subject to the effects of radiation heat trans- 
fer. For physically allowable disturbances, it is poss- 
ible to bound the nonquadratic functional in the 
energy identity by an appropriate quadratic term, 
resulting in the calculation of an energy limit con- 
ditional upon disturbance amplitude. Radiation was 
found to be stabilizing in all cases, with the amount 
of stabilization increasing with increasing radiation 
and overheat parameters and with decreasing dis- 
turbance amplitude. The stabilization is physically 
explained, in part, by the deformation of the usual (in 
the absence of radiation) linear temperature profile 
between the two planes, resulting in the formation of 
thermal boundary layers at both walls. The calculated 

results are in agreement, in the appropriate limiting 
cases, with energy theory results without radiation 
and with linear theory results valid for small values of 
the overheat parameter. 
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